
LIQUID REAL VECTOR SPACES: A SHORT INTRODUCTION

In this last talk we show why M-complete vector spaces do not define an analytic ring structure on R.
The key feature is non-conventional functional analysis in the form of non-locally convex spaces. After this
observation, we introduce the liquid analytic structures on R. We will follow [CS20, Lectures V-VI].

1. Why M-complete real vector spaces fail

Previously, we introduced a category of quasi-separatedM-complete real vector spaces. We showed that
for V such a condensed real vector space, S a profinite map, and f : S → V a map of condensed sets,
there is a unique extension to the space of Radon measuresM(S,R)→ V ; this even holds for S a compact
Hausdorff space, and it is a condensed enhancement of the classical integration on locally convex vector
spaces. However, if M-complete real vector spaces (without the quasi-separated assumptions) form an
analytic ring structure on R, then M-complete vector spaces should be stable under both extensions and
cokernels. In the following section we will see that neither of these properties hold.

1.1. Non stability under extensions and cokernels. The non stability under extensions comes back
to Ribet [Rib79] and his examples of extensions of locally convex spaces which are non locally convex.

Let V = ℓ1(N) be the Banach space of ℓ1-sequences of real numbers. The following lemma characterizes
extensions of Banach spaces by R.

Lemma 1.1 ([CS20, Lemma 5.2]). Let V be a Banach space, let V0 ⊂ V be a dense subspace and let
ϕ : V0 → R be a function that is almost linear in the sense that there exists C > 0 such that for v, w ∈ V0

we have
(1) ϕ(av) = aϕ(v) for a ∈ R and v ∈ V0.
(2)

|ϕ(v + w)− ϕ(v)− ϕ(w)| ≤ C(||v||+ ||w||).
Then V ′

0 := R×V0 has topological vector space structure with a system of open neighbourhoods of 0 given
by

{(r, v) : ||v||+ |r − ϕ(v)| < ε}.
The completion V ′ of this vector spaces defines an extension 0 → R → V ′ → V → 0 of topological vector
spaces (and so of condensed real vector spaces).

This extension is split (as condensed or topological vector spaces) if and only if there is a linear function
f0 : V0 → R such that |f(v)− ϕ(v)| ≤ C ′||v|| for all v ∈ V0 and some C ′ > 0.

Proof. The almost linear property of ϕ guarantee that the natural real vector space structure on R× V0 is
continuous, so it is indeed a topological real vector space. It is also clear that the completion V ′ provides
such an extension. Note that two almost linear functions ϕ1 and ϕ2 that are equivalent in the sense that
|ϕ1(v) − ϕ2(v)| ≤ C ′||v|| for all v ∈ V0 and C ′ > 0 define the same topological vector space. Indeed, we
have inequalities

|ϕ1(v + w)− ϕ1(v)− ϕ1(w)| ≤ |ϕ2(v + w)− ϕ2(v)− ϕ2(w)|+ 2C ′(||v||+ ||w||),

so if ϕ2 is almost linear then so is ϕ1, and

||v||+ |r − ϕ1(v)| ≤ (1 + C ′)||v||+ |r − ϕ2(v)|,

so both ϕ1 and ϕ2 define cofinal system of neighbourhoods of 0. The map ϕ completes to a (not necessarily
linear) continuous map of topological spaces ϕ : V → V ′.

Thus, if ϕ = f is linear, then V ′ = V ⊕R. Conversely, suppose that V ′ is split, then we can find a section
s : V → V ′ of topological real vector spaces. Restricting to V0 we find a linear map f : V0 → R such that
s(v) = (f(v), v) for v ∈ V0. Now, the map s being continuous precisely means that |f(v)− ϕ(v)| ≤ C ′||v||
for some C ′ > 0, proving the claim. □
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From the previous lemma we see that in order to construct a non-split extension we need to find a
function that is almost linear but not equivalent to a linear function. An example of such a function is
given by entropy: for p1, . . . , pn numbers in [0, 1] with sum 1 their entropy is

H = −
n∑

i=1

pi log pi.

The almost linearity property of x log |x| follows by the next lemma.

Lemma 1.2 ([CS20, Lemma 5.3]). For all real number s and t, one has

|s log |s|+ t log |t| − (s+ t) log |s+ t|| ≤ (2 log 2)(|s|+ |t|).
Proof. Both terms are homogeneous for the multiplication by λ ∈ R in s and t. Thus, without loss of
generality we can assume that t = 1 and s ∈ [−1, 1]. We need to show that

|s log |s| − (s+ 1) log |s+ 1|| ≤ (2 log 2)(|s|+ 1).

For this, it suffices to show that the left hand side is bounded by 2 log 2, which is an easy calculus exercise.
□

Corollary 1.3. Let V0 ⊂ V = ℓ1(N) be the subspace spanned by sequences with finite support. The function

H : (x0, x1, . . .) ∈ V0 7→ s log |s| −
∑
i≥0

xi log |xi|, where s =
∑
i≥0

xi,

is locally almost linear but not globally almost linear, and so defines a non-split extension

0→ R→ V ′ → V → 0.

Proof. Almost linearity follows by Lemma 1.2. For global non linearity, suppose that H is close to
∑

i λixi
for some λi ∈ R. Looking at the basis en = (· · · , 0, 0, 1, 0, 0, · · · ), one sees that the λi are bounded (as
H = 0 on such points). On the other hand, looking at fn =

∑n−1
i=0

1
nei = ( 1n , . . . ,

1
n , 0 . . .), global almost

linearity produces

|H(n)− 1

n

n−1∑
i=0

λi| ≤ C

for some constant C. This would require H(n) to be bounded, which is not true since H(n) = log(n). □

Let W1 :=M(N ∪ {∞},R)/(∞). We can construct the counter example explicitly as follows.

Definition 1.4. Consider the following increasing union of compact Hausdorff spaces

W̃1 =
⊔
c>0

{(x0, x1, . . . , y0, y1, . . .) ∈
∏
N
[−c, c]×

∏
N
[−c, c]|

∑
n

(|xn|+ |yn − xn log |xn||) ≤ c}.

Proposition 1.5 ([CS20, Proposition 5.6]). The condensed set W̃1 has a natural structure of condensed
real vector space and sits in a exact sequence

0→W1 → W̃1 →W1 → 0

given by (y0, y1, . . . ) 7→ (0, . . . , y0, y1, . . .) and (x0, x1, . . . , y1, y2, . . .) 7→ (x0, x1, . . .).

Proof. The structure of condensed real vector space follows by Lemma 1.2. The sequence is clearly left
exact, the map W̃1 →W1 is surjective by taking yn = xn log |xn|. □

Proposition 1.6. The space W̃1 is not M-complete.

Proof. The sequence en with xn = 1 and all other terms zero is a null-sequence in W̃1 (open neighbourhood
of 0 in the product if intervals contains all but finitely many copies). Then, if it wasM-complete we could
construct a map M(N ∪ {∞},R) → W̃ vanishing at infinity, so a section W → W̃ . But we reconstruct
the extension 0 → R → V ′ → ℓ1(N) → from 0 → W1 → W̃1 → W1 → 0 as follows: first take a pullback
along the map ℓ1(N)→ W1, the new extension 0→ W1 → W ′ → ℓ1(N)→ 0 is actually the pushout along
ℓ1(N) → W1 of another short exact sequence 0 → ℓ1(N) → V ′′ → ℓ1(N) → 0, then the extension V ′ is
construct by the sum of all xi’s ℓ1(N)→ R. Thus a split of W̃1 →W1 would produce a split of V ′ → ℓ1(N)
(after carefully following the steps before) which is not possible by Corollary 1.3. □
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We now provide an example of a cokernel of M-complete real vector spaces which is not M-complete.
Note however that any such space must be non quasi-separated. Let W∞ =

⋃
c>0

∏
N[−c, c] be the Smith

space of bounded null sequences, we have an inclusion W1 ⊂W∞.

Proposition 1.7 ([CS20, Proposition 5.8]). The quotient W∞/W1 is notM-complete. more precisely, the
map f : W1 →W∞ of condensed sets given by f(x0, x1, . . .) = (x0 log |x0|, x1 log |x1|, . . .) induces a non-zero
map of condensed real vector spaces W1 →W∞/W1 whose restriction to the null-sequence en vanishes.

Proof. In contrast to what happened in Proposition 1.6, what fails in this situation is not the extension
condition to Radon measures, but the uniqueness of such.

We first show that the map f : W1 →W∞/W1 is a map of condensed abelian groups. This is equivalent
to show that a precise function W1 ×W1 → W∞/W1 vanishes. It is the projection along W∞ → W∞/W1

of the map W1 ×W1 →W∞ given by sending (x0, x1, . . . , )× (y0, y1, . . .) to (x0 log |x0|+ y0 log |y0| − (x0 +
y0) log |x0+y0|, (x1 log |x1|+y1 log |y1|−(x1+y1) log |x1+y1|, . . .) which lies in W1 by Lemma 1.2, this gives
additivity. For R-linearity, we consider instead the map R×W1 →W∞ given by mapping (r)× (x0, . . .) to
(rx0 log |rx0|−rx0 log |x0|, rx1 log |rx1|−rx1 log |x1|, . . .), but rx0 log |rx0|−rx0 log |x0| = rx0 log r, proving
that it lands in W1.

To see that the map f is non-zero it suffices to see that the image of W1 in W∞ does not land in W1, but
the sequence ( 1n , . . . ,

1
n , 0, . . .) with n occurrences of n defines a map N ∪ {∞} →W1 whose image under f

is the sequence (− logn
n , . . . ,− logn

n , 0, . . .) which does not have bounded ℓ1-norm. □

2. Liquid real numbers

One of the problems whyM-complete condensed real vector spaces do not form an analytic ring is that
there are extensions of locally convex vector spaces which are non locally convex. Let us recall the following
definition

Definition 2.1 ([CS20, Definition 6.1]). For 0 < p ≤ 1, a p-Banach space is a topological R-vector space
V such that there exists a p-norm, i.e. a continuous map

|| · || : V → R≥0

with the following properties:
(1) For any v ∈ V , ||v|| = 0 if and only if v = 0.
(2) For any v ∈ V and a ∈ R we have ||av|| = |a|p||v||.
(3) For any v, w ∈ V we have ||v + w|| ≤ ||v||+ ||w||.
(4) The sets {v : ||v|| ≤ ε} form a basis of neighbourhoods of 0.
(5) For any sequence v0, v1, . . . ∈ V such that ||vi − vj || → 0 as i, j →∞ there is a unique v ∈ V with
||v − vi|| → 0.

A quasi-Banach space is a p-Banach space for some 0 < p ≤ 1.

The following theorem explains the behaviour of extensions of quasi-Banach spaces.

Theorem 2.2 ([Kal81]). An extension of two p-Banach spaces is p′-Banach for all p′ < p.

The previous theorem motivates the following definition of p-Radon measures.

Definition 2.3 ([CS20, Definition 6.3]). Let S = lim←−i
Si be a profinite set written as a limit of finite sets.

For 0 < p < 1 we define
Mp(S,R) =

⊔
c>0

Mp(S,R)≤c

where
Mp(S,R)≤c = lim←−

i

R[Si]ℓp≤c

and R[Si]ℓp≤c is the spaces of sequences (as)s∈Si such that
∑

s∈Si
|as|p ≤ c. Equivalently, Mp(S,R) is the

space of functions µ : Open(S)→ R satisfying the following properties:
(1) For any finite disjoint union

⊔
i Ui ⊂ S of open subspaces of S we have

µ(
⊔
i

Ui) =
∑
i

µ(Ui).
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(2) There is C > 0 such that for any disjoint union S =
⊔n

i=1 Ui we have∑
i=1n

|µ(Ui)|p ≤ C.

For 0 < p ≤ 1 we define

M<p(S,R) =
⋃
p′<p

Mp′(S,R).

The idea behind the spaces of (< p)-Radon measures is that they capture the non-locally convex behaviour
that extensions of Banach spaces satisfy by Theorem 2.2. The first property that the spaces of Radon
measures must satisfy is that they are functorial for maps between profinite sets, this follows from the fact
that any map of finite sets S → T gives rise a map R[S]ℓp≤c → R[T ]ℓp≤c.

Let us now state the main theorem regarding the liquid analytic structures.

Theorem 2.4 ([CS20, Theorems 6.5 and 6.6]). Let 0 < p ≤ 1, the datum (R, S 7→ M<p(S,R)) defines an
analytic ring structure on R. More precisely, let Liq<p(R) be the category of condensed real vector spaces
V such that for any extremally disconnected set S, any map S → V extends uniquely to M<p(S,R) → V .
The following holds:

(1) Liq<p(R) is an abelian category stable under limits, colimits and extensions of Cond(R).
(2) The inclusion Liq<p(R)→ Cond(R) has a left adjoint (−)liq<p which is the unique colimit preserving

functor mapping R[S] to M<p(S,R) for S extremally disconnected.
(3) The category Liq<p(R) is symmetric monoidal with tensor − ⊗<p − and (−)liq<p is symmetric

monoidal.
Moreover, let C ⊂ D(Cond(R)) be the full subcategory of complexes M such that for all S extremally

disconnected the following map is an equivalence:

RHomR(M<p(S,R),M)
∼−→ RHomR(R[S],M).

The following hold:
(1) The category C is stable under all limits, colimits and Postnikov towers in D(Cond(R)).
(2) An object M ∈ D(Cond(R)) is in C if and only if H i(M) ∈ Liq<p(R) for all i ∈ Z.
(3) The natural functor D(Liq<p(R))→ D(Cond(R)) is fully faithful and has C by essential image.
(4) The forgetful functor D(Liq<p(R)) → D(Cond(R)) has a left adjoint (−)L liq<p which is the left

derived functor of (−)liq<p. Moreover D(Liq<p(R)) is symmetric monoidal with tensor −⊗L
<p− and

(−)L liq<p is a symmetric monoidal functor.
(5) The tensor −⊗L

<p − is the left derived functor of −⊗<p −.

To provide a hint of what liquid real vector spaces look like, let us study the quasi-separated ones. We
need a definition.

Definition 2.5. Let 0 < q ≤ 1. A quasi-compact subobject K of a condensed real vector space V is said
q-convex if for all finite sets S, the map

RS
ℓq≤1 ×KS → V,

((λs), (xs)) 7→
∑
s

λsxs

lands inside K.

The following theorem is analogue to the one we proved forM-complete real vector spaces.

Theorem 2.6 ([CS22, Theorem 2.14]). Let V be a quasi-separated condesed real vector space and 0 < p ≤ 1.
Then V is p-liquid if and only of for eqvery q < p, every quasi-compact subspace K ⊂ V is contained in
a quasi-compact q-convex subspace of V . In particular, any p-Banach space (and so any complete p-locally
convex vector space) is p-liquid.
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Proof. Suppose that V is liquid, and let K ⊂ V a quasi-compact subspace. Let us choose a surjection
S → K from an extremally disconnected set. We have an extension M<p(S,R)→ V . Let us consider the
restrictionMq(S,R)≤1 → V and let Q denote its image. Then Q is a quasi-compact subspace of V that is
q-convex asMq(S,R)≤1 is a compact q-convex subspace ofMq(S,R).

Conversely, suppose that V satisfies the hypothesis of the theorem, let S be an extremally disconnected
set and S → V a map of condensed sets. The free condensed real vector space R[S] ⊂ M<p(S,R) is
dense, so it suffices to prove the existence of the map M<p(S,R) → V . Moreover, it suffices to show the
existence of the map Mq(S,R)→ V for all q < p. Let Q be the image of S in V and let Q′ be a q-convex
quasi-compact subspace of V containing Q. The R-span W =

⋃
c>0 cQ

′ ⊂ V is a condensed real vector
space (for stability under addition note that for v, w ∈ Q′ the object 1

nv + 1
nw remains in Q′ for n >> 0).

It suffices to show that there is a unique lift Mq(S,R) → W . Let us write S = lim←−i
Si as a limit of finite

sets with projections πi : S → Si, and let γi : Si → S be any lift. Let µ ∈Mq(S,R)≤1 and consider the net

{
∑
s∈Si

f(γi(s))µ(π
−1
i (s))}i,γi ∈W. (2.1)

The space W is q-locally convex, and the same argument for M-complete vector spaces shows that (2.1)
is a Cauchy net, whose limit is independent of the lift γi : Si → S. Note that in the argument we use that∑

s∈Si
|µ(π−1

i (s))|q ≤ 1 to guarantee that if f(γi(s)) lands in a q-convex neighbourhood U of 0, then so is
the sum

∑
s∈Si

f(γi(s))µ(π
−1
i (s)). □
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